A Molecular Orbital Study of the Role of BH_{5} in the Hydrolysis of BH_{4}^{-}

Irene M. Pepperberg, Thomas A. Halgren, and William N. Lipscomb*1
Contribution from the Gibbs Chemical Laboratory, Harvard University, Cambridge, Massachusetts 02138. Received October 20, 1975

Abstract

Molecular orbital methods are employed to examine the structure and stability of BH_{5} in the light of results for aqueous hydrolysis of $\mathrm{BH}_{4}{ }^{-}$. These results suggest that BH_{5} exists as a metastable intermediate. The optimal BH_{5} geometry for a given constraint in B-H distance is found to have C_{s} symmetry, and to have identifiable BH_{3} and H_{2} subunits consistent with the experimental expectations for the intermediate in hydrolysis. However, single determinant calculations using PRDDO and STO-3G minimum basis sets and 4-31G and double ζ plus polarization extended basis sets indicate that BH_{5} is unstable with respect to dissociation to BH_{3} and H_{2} by $\geq 10 \mathrm{kcal} / \mathrm{mol}$. The stabilization of BH_{5} relative to BH_{3} and H_{2} from configuration interaction is estimated to be $\approx 10 \mathrm{kcal} / \mathrm{mol}$. Studies of solvation effects using specific hydration and statistical interaction models indicate that the product BH_{3} is stabilized in solution by $\sim 6 \mathrm{kcal} / \mathrm{mol}$ by formation of a $\mathrm{H}_{2} \mathrm{O}: \mathrm{BH}_{3}$ complex. Representative BH_{5} structures are stabilized by much smaller amounts of $2-3 \mathrm{kcal} / \mathrm{mol}$. The net result is that the experimental and computational results cannot now be reconciled within limits of a few kilocalories per mole, presumably because of limitations in the theoretical procedures. Less sensitive aspects of the chemistry of BH_{5} are examined using PRDDO, and in some cases 4-31 G, calculations. These aspects include (a) a study of electronically allowed and disallowed dissociations from BH_{5} of molecular hydrogen by means of various hydrogen atom pairings in each of the $D_{3 h}, C_{4 v}$, and $C_{2 c}$ structures, (b) a comparison of bonding interactions in BH_{5} and $\mathrm{CH}_{5}{ }^{+}$using localized molecular orbital techniques, and (c) a consideration of pathways for intramolecular rearrangement in C_{s} structures for BH_{5}.

The pentacoordinated boranes BH_{5} and $\mathrm{BH}_{4} \mathrm{D}$ have been proposed ${ }^{2-6}$ as intermediates in the hydrolysis and deuterolysis of borohydride ion, $\mathrm{BH}_{4}{ }^{-}$. The role of these borane intermediates appears to be similar to that proposed for the isoelectronic $\mathrm{CH}_{5}{ }^{+}$in the protonation of CH_{4} by strong acids; furthermore, the frequent use of boranes $\left(\mathrm{BH}_{3}, \mathrm{R}_{3} \mathrm{~B}\right)$ as models for the carbenium ions $\left(\mathrm{CH}_{3}{ }^{+}, \mathrm{R}_{3} \mathrm{C}^{+}\right)^{7,8}$ might suggest analogous properties for BH_{5} and $\mathrm{CH}_{5}{ }^{+}$.

As a chemical-species, $\mathrm{CH}_{5}{ }^{+}$has been well characterized, both experimentally in gas phase ${ }^{9}$ and solution studies, ${ }^{10}$ and theoretically, through molecular orbital calculations employing a variety of levels of sophistication. ${ }^{11-19}$ By all accounts, the most stable form displays C_{s} symmetry and has two relatively long and three normal $\mathrm{C}-\mathrm{H}$ bond lengths. Although readily recognizable as a complex between $\mathrm{CH}_{3}{ }^{+}$and $\mathrm{H}_{2},{ }^{12}$ this form is stable with respect to dissociation either to $\mathrm{CH}_{3}{ }^{+}$and $\mathrm{H}_{2}{ }^{15.18 .19}$ or to CH_{4} and $\mathrm{H}^{+} .18$

As noted above, one might expect the less extensively studied BH_{5} to have properties analogous to those of $\mathrm{CH}_{5}{ }^{+}$. However, a neutral BH_{3} should be much less attractive than $\mathrm{CH}_{3}{ }^{+}$as a coordination site for H_{2}. Furthermore, BH_{3} has an empty valence orbital, but H_{2} does not, and hence the crucial reciprocal donor-acceptor role played, for example, by each BH_{3} subunit in $\mathrm{B}_{2} \mathrm{H}_{6}{ }^{20,21}$ would not be applicable here. In CNDO/ 2 calculations by Olah et al., BH_{5} was found to have C_{s} symmetry similar to that of $\mathrm{CH}_{5}+$. Although the CNDO/ 2 studies were performed primarily to determine the preferred geometry for BH_{5}, the calculations also predicted a binding energy for BH_{5} of $960 \mathrm{kcal} / \mathrm{mol} .{ }^{5}$ A more accurate calculation might establish that only a marginally stable structure exists for BH_{5}.

Nevertheless, experimental studies ${ }^{2-6}$ on the reactions of $\mathrm{BH}_{4}{ }^{-}$(or $\mathrm{BD}_{4}{ }^{-}$) in $\mathrm{D}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$ at varying pH appear strongly to support the existence of a pentacoordinated $\left(\mathrm{BH}_{5}\right.$, $\mathrm{BH}_{4} \mathrm{D}$, etc.) intermediate which can: (a) lose a proton to form $\mathrm{BH}_{3} \mathrm{D}^{-}$(exchange); (b) lose molecular hydrogen to form BH_{3} and HD (hydrolysis); or (c) first undergo an internal rearrangement (scrambling) which ultimately makes possible the formation of $\mathrm{BH}_{2} \mathrm{D}$ and H_{2} (Figure 1). Thus, in $\mathrm{D}_{2} \mathrm{O}, \mathrm{BH}_{4}{ }^{-}$ can evolve hydrogen and/or take up deuterium from the solvent to form, successively, $\mathrm{BH}_{3} \mathrm{D}^{-}, \mathrm{BH}_{2} \mathrm{D}_{2}{ }^{-}$, etc. At $\mathrm{pD} \leq 12$, the protonation of $\mathrm{BH}_{4}{ }^{-}$(shown schematically in Figure 1) is mainly effected by $\mathrm{D}_{3} \mathrm{O}^{+} .{ }^{4}$ Here, the relative ratio for hy-
drogen loss (mainly HD) and deuterium exchange is essentially constant $(\sim 1: 10)^{22}$ because the concentration of $\mathrm{D}_{2} \mathrm{O}$, the predominant base for abstraction of H^{+}or D^{+}, is itself constant $\left(\left[\mathrm{D}_{2} \mathrm{O}\right] \simeq 55 \mathrm{M}\right)$. The total rate is then proportional to the $\mathrm{D}_{3} \mathrm{O}^{+}$concentration, and the rate of scrambling is extremely small. ${ }^{3}$ Above pD 12, the total rate becomes essentially constant, reflecting protonation by $\mathrm{D}_{2} \mathrm{O}$, but deuterium exchange increasingly predominates over hydrolysis as the OD^{-}concentration rises above $\sim 0.1 \mathrm{M}$; at $\mathrm{pD}>14$, only the exchange with solvent is evident. ${ }^{23}$ The proposed intermediate thus appears to be BH_{5} (or $\mathrm{BH}_{4} \mathrm{D}$, etc.), and might indeed be written as $\mathrm{BH}_{3}: \mathrm{HD}$ to account for the fact that nearly all of the hydrogen evolved in the deuterolysis of $\mathrm{BH}_{4}{ }^{-}$is $\mathrm{HD}^{2-4,6}$

Olah and co-workers have observed an essentially statistical composition of evolved molecular hydrogen for the reaction of, e.g., solid NaBH_{4} with anhydrous $\mathrm{D}_{2} \mathrm{SO}_{4}$ or DF. ${ }^{5}$ However, because of several factors associated with the rather different conditions employed in these experiments, we shall focus primarily on the better characterized results in aqueous solution.

Despite difficulties inherent in modeling a process which occurs in solution, BH_{5} is an attractive system for a molecular orbital study. Its small size would leave room for an appreciable elaboration of the computational model itself, if necessary, in order to reconcile the theoretical predictions with the experimental results. Somewhat to our surprise, we have found such a reconciliation extremely difficult to effect. The difficulty probably arises from limitations in the computational models selected, and/or from limitations in the procedures available to us for taking the aqueous environment into account. We offer this study, in part, as an object lesson in the application of present quantum mechanical techniques to a difficult problem, which should be useful for the development and refinement of improved computational models. In addition, we investigate several aspects of the behavior of BH_{5} which we believe can properly be chronicled by our relatively simple physical model.

We shall first report calculations for several nuclear configurations for BH_{5} which are based on those proposed ${ }^{9-19}$ for the isoelectronic $\mathrm{CH}_{5}{ }^{+}$. For the most part, these calculations have been carried out in the approximation of partial retention of diatomic differential overlap (PRDDO), ${ }^{24}$ a rapid, nonempirical SCF method which has afforded results of es-
sentially ab initio minimum basis set quality. ${ }^{20,24,25}$ We employ molecular energies, molecular orbitals localized by the method of Boys ${ }^{26,27}$ (LMO's), overlap populations, atomic charges, and electron density maps ${ }^{28}$ to compare the bonding in BH_{5} and $\mathrm{CH}_{5}+$. Principal results are explicitly tested with the use of minimal STO-3G and extended $4-31 \mathrm{G}$ calculations ${ }^{29}$ and by a further extension of the basis set to double ζ plus polarization functions. ${ }^{30}$ The effects of a limited inclusion of configuration interaction ${ }^{31}$ on the dissociation of BH_{5} to BH_{3} and H_{2} are also considered. In addition, both statistical interaction and specific hydration models are employed in order to examine the effects of solvation on the energy of BH_{5} relative to $\mathrm{BH}_{3}+\mathrm{H}_{2}$.

Preceding these results we conduct a geometry search for BH_{5}, study the electronically allowed and disallowed processes for loss of various pairs of H atoms from BH_{5}, and investigate, using PRDDO and 4-31G theoretical methods, the pathways for internal rearrangements in BH_{5}.

Minimum Basis Set Results

Geometry Search for $\mathbf{B H}_{\mathbf{5}}$. Minimum basis set PRDDO calculations using the exponents listed in Table I gave rise to the structures shown in Figures $2 \mathrm{a}-\mathrm{d}$ (Table II). With the exception of the C_{s} structure shown in Figure 2d, each was fully optimized within the symmetry imposed ($D_{3 h}, C_{4 i}, C_{2 i}$). Symmetry restrictions were then successively removed, and all bond angles and internuclear distances were sequentially refined until consecutive full cycles yielded structures which differed by less than 1.0° in bond angles and 0.01 au in internuclear distances, or until dissociation to BH_{3} and H_{2} was clearly indicated. No structure for BH_{5} was found to be stable with respect to dissociation to BH_{3} and H_{2} at the PRDDO level. The details of the calculations upon removal of the symmetry restrictions are as follows.
$D_{3 h}$. Starting from the optimized $D_{3 h}$ structure shown in Figure 2 a, an initial angular refinement of the axial hydrogens resulted in a monotonic decrease in energy and led to either the $C_{4 c}$ structure (Figure 3a) or a $C_{2 v}$ structure (Figure 3b). The final structure obtained depended on the direction of the initial variation.
\boldsymbol{C}_{4}. Continuous displacements of the atoms from the optimized $C_{4 v}$ geometry (Figure 2b) toward either $C_{2 v}$ (Figure 3 c) or C_{s} symmetry positions (Figure $3 \mathrm{c}^{\prime}$) via linear synchronous transit pathways ${ }^{32}$ were accompanied by monotonic decreases in energy. As Figure 3c indicates, the pathway to C_{20} symmetry consists primarily of a rotation of $\mathrm{H} 2, \mathrm{H} 3$, and H 4 about the central boron atom, while the deformation to C_{s} symmetry involves mainly the motion of H 4 and H 5 .
$C_{2 v}$. Removal of the constraint of $C_{2 v}$ symmetry resulted in the migration of H 4 toward H 5 (or Hl) (Figure 3d) and in rapid increases in the $\mathrm{B}-\mathrm{H} 4$ and $\mathrm{B}-\mathrm{H} 5$ (or $\mathrm{B}-\mathrm{H} 1$) distances. The remaining atoms progressively assumed the planar geometry characteristic of BH_{3}, and the result was dissociation to BH_{3} and H_{2} (Figure 3f).
$C_{\boldsymbol{s}}$. In this case, C_{s} symmetry was maintained (Figure 2 d), but the hydrogen-boron lengths, which previously had been fixed at 2.28 au for the C_{s} structure, were fully optimized. This refinement resulted in rapid increases in the $\mathrm{B}-\mathrm{H} 4$ and $\mathrm{B}-\mathrm{H} 5$ distances. Further, the $\mathrm{B}-\mathrm{H} 1, \mathrm{~B}-\mathrm{H} 2$, and $\mathrm{B}-\mathrm{H} 3$ bond lengths shortened until they corresponded to those of BH_{3}; we again observed dissociation to BH_{3} and H_{2} (Figure 3e). Particular structures along this dissociation curve (Figure 4) are further discussed below. The structure having common $\mathrm{B}-\mathrm{H}$ bond lengths of 2.28 au will be called $C_{s}(\mathrm{I})$, while those having distal $\mathrm{B}-\mathrm{H}_{4,5}$ lengths of 2.55 and 2.81 au will be denoted, respectively, as C_{s} (II) and C_{s} (III).

Pathways for Expulsion of $\mathbf{H}_{\mathbf{2}}$. Given that all the PRDDO structures for BH_{5} are less stable than $\mathrm{BH}_{3}+\mathrm{H}_{2}$ (Table III),

Figure 1. A schematic mechanism for reaction of BH_{4}^{-}in $\mathrm{D}_{2} \mathrm{O}$.

(a) $O_{3 h}$
(b) $C_{A V}$

Figure 2. Possible structures for BH_{5}. (a) $D_{3 h}$: threefold axis linear with $\mathrm{H}_{1}-\mathrm{B}-\mathrm{H}_{5}, r_{1}=2.252 \mathrm{au}, r_{2}=2.280 \mathrm{au}$. (b) $\mathrm{C}_{4 c}$: fourfold axis along $\mathrm{H}_{3}-\mathrm{B}$; $r_{1}=2.172 \mathrm{au}, r_{2}=2.287 \mathrm{au}, \theta=117.3^{\circ}, \alpha=77.9^{\circ}$. (c) $C_{2 v^{\prime}}$ twofold axis collinear with $\mathrm{H}_{4}-\mathrm{B}, r_{1}=2.492 \mathrm{au}, r_{2}=2.191 \mathrm{au}, r_{3}=2.370 \mathrm{au}, \theta=$ $123.0^{\circ}, \alpha=56.0^{\circ}$. (d) C_{5} : symmetry plane bisects $\angle \mathrm{H}_{4}-\mathrm{B}-\mathrm{H}_{5} . C_{s}(1): r_{1}$ $=r_{2}=r_{3}=2.280 \mathrm{au}, \theta=106.8^{\circ}, \alpha=46.6^{\circ}, \beta=116.4^{\circ} . C_{s}(11): r_{1}=$ $2.182 \mathrm{au}, r_{2}=2.225 \mathrm{au}, r_{3}=2.555 \mathrm{au}, \theta=108.8^{\circ}, \alpha=38.0^{\circ}, \beta=117.1^{\circ}$. $C_{s}(111): r_{1}=2.192 \mathrm{au}, r_{2}=2.205 \mathrm{au}, r_{3}=2.807 \mathrm{au} . \theta=115.4^{\circ}, \alpha=32.1^{\circ}$, $\beta=117.4^{\circ}$.

Table I. Exponents

Minimum basis set						
BH_{5}	B	Is	4.6838	$\mathrm{H}^{\text {a }}$	1 s	1.136
		2s	1.4489	$\mathrm{H}^{\text {b }}$	1 s	1.2
		2p	1.4836			
$\mathrm{CH}_{5}{ }^{+c}$	C	Is	5.68	H1	$1 s$	1.26
		2s	1.75	H4	1 s	1.29
		2p	1.75			
$\mathrm{CH}_{3}{ }^{+c}$	C	1 s	5.68	H	1 s	1.31
		2s	1.75			
		2 p	1.75			
H_{2}				H	1 s	1.2

[^0]it might at first appear that the molecule of hydrogen evolved could readily form from any of the ten pairs [$5 \times 4 / 2$] of hydrogen atoms in BH_{5}. This, however, is not the case. We find instead that H_{2} must ultimately be derived from one axial and

Table II. Coordinates ${ }^{a}$

			x	y	z
BH_{5}	$D_{3 h}$	B	0.0	0.0	0.0
		H2	-1.125 5	1.94942	0.0
		H3	2.251	0.0	0.0
		H5	0.0	0.0	2.280
	$C_{4 v}$	B	0.0	0.0	0.0
		H1	1.43749	1.43749	-1.04767
		H3	0.0	0.0	2.171996
	$C_{2 c}$	B	0.0	0.0	0.0
		H1	1.32524	0.0	1.96484
		H2	-1.045 47	1.92547	0.0
		H4	2.492	0.0	0.0
	$C_{s}{ }^{\text {b }}$ (1)	B	0.0	0.0	0.0
		H1	0.0	1.76537	-1.144 63
		H2	1.82606	-0.21101	1.34043
		H4	0.90427	-1.805 03	-1.074 45
	$C_{s}{ }^{\text {c }}$ (11)	B	0.0	0.0	0.0
		H1	0.0	1.63859	-1.44088
		H2	1.80851	-0.225 67	1.27585
		H4	0.83131	-2.095 86	-1.20131
	$C_{s}{ }^{d}(111)$	B	0.0	0.0	0.0
		H1	0.0	1.54112	1.55878
		H2	1.86425	-0.28718	-1.14200
		H4	0.77625	-2.266 53	1.46272
$\mathrm{CH}_{5}{ }^{+}$	C_{s}	C	0.0	0.0	0.0
		H1	1.96163	0.0	-0.530 74
		H2	-0.980 84	1.69879	-0.530 74
		H4	0.0	0.84969	2.38851
$\mathrm{CH}_{3}{ }^{+}$	$D_{3 h}$	C	0.0	0.0	0.0
		H1	2.04523	0.0	0.0
		H2	-1.022 67	-1.771 19	0.0
H_{2}		HI	0.7	0.0	0.0

${ }^{a}$ Coordinates are given in atomic units. ${ }^{b}$ Distal B-H lengths are $2.29 \mathrm{au} .{ }^{c}$ Distal B-H lengths are $2.56 \mathrm{au} .{ }^{d}$ Distal B-H lengths are 2.81 au .

Figure 3. Structures obtained by successive removal of symmetry restrictions for BH_{5}.

Figure 4. Variation of energy as a function of distal hydrogen-boron distances (C_{s} pathway) for BH_{5}, with respect to $\mathrm{BH}_{3}+\mathrm{H}_{2}$ at infinite separation. For the minimum basis set calculations, the exponents on the distal hydrogens were changed from 1.136 to 1.2 at the break in the curve.
one equatorial position of the prototype $D_{3 h}$ structure if the evolution of hydrogen is to be spontaneous. For the $D_{3 h}$ structure itself, the origin of this preference is evident both in the LMO results (Table IV) and in the atomic overlap populations (Table V). Thus the six $D_{3 h}$ axial-equatorial pairs have positive overlap populations of $0.041 \mathrm{e}^{-}$, but negative overlap populations are found for the axial-axial $\left(-0.053 \mathrm{e}^{-}\right)$and the

Table III. Energetics ${ }^{a}$

		E (PRDDO)	$\begin{gathered} E_{\text {diss }} \\ (\text { PRDDO }) \end{gathered}$	$\underset{\text { CI) }}{E(\text { PRDDO }}$	$\begin{aligned} & E_{\text {diss }}(\text { PR. } \\ & \text { DDO-CI }) \end{aligned}$	$E($ STO-3G)	$\begin{gathered} E_{\text {diss }} \\ (\mathrm{STO}-3 \mathrm{G}) \end{gathered}$	$E(4-31 \mathrm{G})$	$\begin{gathered} E_{\text {diss }} \\ (4-31 G) \end{gathered}$	E (extbasis) ${ }^{b}$.	$E_{\text {disss }(\text { ext. }}^{\text {basis })^{b}}$
BH_{5}	$D_{3 h}$	-27.383				-27.094		-27.386			
	C_{40}	-27.400				-27.112		-27.403			
	$C_{2 v}$	-27.418				-27.129		-27.423			
	$C_{s}(1)^{c}$	-27.410	-56.5	-27.478	-50.8	-27.121	-46.4	$\begin{aligned} & -27.427 \\ & -27.435^{d} \end{aligned}$	-30.8		
	$C_{s}(11)$	-27.438									
	$C_{s}(111)$	-27.456	-28.5	-27.516	-27.0	-27.158	-23.2	$\begin{aligned} & -27.454 \\ & -27.457^{d} \end{aligned}$	$\begin{aligned} & -13.8 \\ & -12.0 \end{aligned}$	$\begin{aligned} & -27.516^{e} \\ & -27.519 \mathrm{f} \end{aligned}$	$\begin{array}{r} -9.7 e \\ -10.0 \end{array}$
	$C_{s}($ IV)	-27.471	-18.8	-27.530	-18.2	-27.171	-15.1	-27.459	-10.7		
	$C_{s}(\mathrm{~V})$	-27.500 ${ }^{\text {g }}$	-0.6			-27.1948	-0.6	-27.475	-0.6		
$\begin{gathered} \mathrm{BH}_{3}+ \\ \mathrm{H}_{2}(\infty) \end{gathered}$		-27.501		-27.559		-27.195		-27.476		-27.532e	
										-27.535	
H_{2}		-1.129		-1.147		-1.119		-1.127		$\begin{aligned} & -1.130^{e} \\ & -1.134^{f} \end{aligned}$	
$\mathrm{CH}_{5}{ }^{+}$	C_{s}	-40.311	2.6	-40.394	8.7	-39.915 ${ }^{\text {h }}$		-40.322 ${ }^{i}$			
						-39.919 ${ }^{\text {i }}$	$13.7{ }^{\text {i }}$	-40.327 ${ }^{j}$	15.8		
$\mathrm{CH}_{3}{ }^{+}$	$D_{3 h}$	-39.178		-39.233		-38.780 ${ }^{\circ}$		-39.175			
$\begin{gathered} \mathrm{CH}_{3}{ }^{+} \\ +\mathrm{H}_{2} \end{gathered}$		-40.307		-40.380		-39.897 ${ }^{1}$		-40.302 ${ }^{i}$			
$\mathrm{BH}_{4}{ }^{-}$		-26.965				-26.634		-26.923			

${ }^{a}$ Energies are in atomic units ($1 \mathrm{au}=627.57 \mathrm{kcal}$); $E_{\text {diss }}$ is in $\mathrm{kcal} / \mathrm{mol},{ }^{b}$ Ext. basis refers to calculations employing a double ζ plus polarization extended basis set. ${ }^{c}$ Each C_{s} structure represents different distal B-H bond lengths: (1) represents 2.287 au , (11) represents 2.555 au ; (111) represents 2.807 au : (IV) represents 3.167 au ; (V) represents 6.204 au . ${ }^{d}$ Distal $\mathrm{H}-\mathrm{B}-\mathrm{H}$ angle has been optimized in these calculations. ${ }^{e}$ The LSL basis set (cf. ref 21) was used in these calculations. This includes the H_{2} calculation for $\mathrm{BH}_{3}+\mathrm{H}_{2}$. The energy difference when the FR basis is used for H_{2} is $11.9 \mathrm{kcal} / \mathrm{mol}$. f The FR basis set (cf. ref 39) was used for the H_{2} subunit in these calculations. ${ }^{g}$ Calculations were performed with hydrogen exponents for the distal hydrogens. ${ }^{h}$ This calculation employs the exponents of Mulder and Wright (cf. ref 14). ${ }^{i}$ Reference 16. ${ }^{j}$ Reference 19.

Table IV. Localized Orbitals

Structure		$\underset{\mathrm{A}-\mathrm{B}-\mathrm{C}}{\mathrm{LMO}}$	Populations ${ }^{\text {a }}$			\% delocalization ${ }^{\text {b }}$	
		A	B	C			
BH_{5}	$D_{3 h}$		$\mathrm{B}(1)^{\text {c }}$	2.01			4.1
		B-H5 (1)	0.83	0.85		19.5	
		$\mathrm{B}-\mathrm{H} 3-\mathrm{Hl}$ (3)	0.81	0.97	0.22	13.9	
	$C_{4 c}$	B (1)	2.01			4.0	
		B-H2 (1)	0.77	0.96		18.1	
		B-H3 (1)	0.89	1.13		7.3	
		B-H1-H4 (1)	0.77	0.78	0.45	17.3	
		B-H5-H4 (1)	0.77	0.81	0.41	17.3	
	$C_{2 v}{ }^{\text {d }}$	B (1)	2.01			3.6	
		B-H2 (2)	0.89	1.12		10.5	
		B-H4-H5 (2)	0.62	0.39	1.01	15.2	
	$C_{2 c}{ }^{* e}$	B (1)	2.01			3.0	
		B-H3 (1)	0.86	1.08		11.3	
		B-H1-H5 (1)	0.57	0.97	0.38	10.1	
		B-H2-H5 (1)	0.78	0.95	0.27	10.9	
		B-H4-H5 (1)	0.76	0.93	0.31	11.0	
	$C_{s}(11)^{f}$	B (1)	2.01			3.5	
		B-HI (1)	0.89	1.14		9.3	
		B-H2 (2)	0.87	1.11		10.9	
		B-H4-H5 (1)	0.32	0.86	0.86	10.1	
	$C_{s}(111){ }^{g}$	B (1)	2.01			3.3	
		B-H1 (1)	0.89	1.14		9.6	
		B-H2 (2)	0.89	1.13		10.0	
		B-H4-H5 (1)	0.21	0.91	0.91	9.0	
$\mathrm{CH}_{5}{ }^{+}$	C_{s}	C (1)	2.00			2.5	
		C-H1 (1)	0.83	1.19		9.5	
		C-H2 (2)	0.82	1.18		9.8	
		C-H4-H5 (1)	0.58	0.72	0.72	8.7	

[^1]Table V. Overlap Populations

Pair	Structures						
	$\begin{gathered} \mathrm{CH}_{5}{ }^{+} \\ \mathrm{C}_{s} \\ \hline \end{gathered}$	BH_{5}					
		$C_{s}(\mathrm{II})$	$C_{s}(\mathrm{III})$	$D_{3 h}$	C_{40}	$C_{2 c}{ }^{\text {a }}$	$C_{20}{ }^{*}{ }^{\text {b }}$
$\mathrm{B}(\mathrm{C})-\mathrm{HI}$	0.77	0.84	0.83	0.67	0.58	0.51	0.66
$\mathrm{B}(\mathrm{C})-\mathrm{H} 2$	0.75	0.79	0.81	0.59	0.58	0.82	0.66
$\mathrm{B}(\mathrm{C})-\mathrm{H} 3$	0.75	0.79	0.81	0.67	0.83	0.82	0.29
$\mathrm{B}(\mathrm{C})-\mathrm{H} 4$	0.27	0.20	0.11	0.59	0.58	0.31	0.77
$\mathrm{B}(\mathrm{C})-\mathrm{H} 5$	0.27	0.20	0.11	0.67	0.58	0.51	0.29
$\mathrm{H} 1-\mathrm{H} 2$	-0.02	-0.03	-0.03	0.04	0.08	-0.01	-0.05
H1-H3	-0.02	-0.03	-0.03	0.04	-0.03	-0.01	0.05
H1-H4	-0.02	-0.03	-0.03	0.04	0.08	0.21	-0.01
HI-HS	-0.02	-0.03	-0.03	-0.05	-0.09	-0.12	-0.32
H2-H3	-0.02	-0.02	-0.03	-0.07	-0.03	-0.03	0.05
H2-H4	-0.03	-0.00	-0.01	-0.07	-0.09	-0.05	-0.01
H2-H5	-0.01	-0.07	-0.05	0.04	0.08	-0.01	0.05
H3-H4	-0.01	-0.07	-0.05	-0.07	-0.03	-0.05	-0.01
H3-H5	-0.03	0.00	-0.01	0.04	-0.03	-0.01	-0.32
H4-H5	0.41	0.56	0.68	0.04	0.08	0.21	-0.01

${ }^{a}$ This is the original $C_{2 c}$ structure which is also obtained by movement of $\mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4$ in the $C_{4 c}$ configuration (cf. Figure 3 c). ${ }^{b}$ This is the structure of $C_{2 v}$ symmetry obtained by attempting the direct abstraction of HI and H 5 from the $C_{4 c}$ configuration.

$\mathrm{C}_{4 \mathrm{~V}}$

Figure 5. Boys localized orbital representations of the $C_{4 c}$ and C_{20} structures. Solid lines (-) represent contributions from atoms of $\geq 0.5 \mathrm{e}^{-}$, and dashed lines ($-\cdot$) represent contributions of between 0.35 and $0.5 \mathrm{e}^{-}$.
equatorial-equatorial pairs ($-0.067 \mathrm{e}^{-}$). The LMO picture reveals that each axial-equatorial pair can take part in one of the three-center $\mathrm{H}-\mathrm{B}-\mathrm{H}$ bonds, one of which can, in turn, smoothly evolve into the molecular orbital of the product hydrogen molecule. Similarly, these axial-equatorial pairs can give rise to the three-center $\mathrm{H}-\mathrm{B}-\mathrm{H}$ bonds present in either the $C_{4 c}$ or $C_{2 v}$ structures pictured in Figure 5. As might be expected on geometrical grounds, such deformations enhance certain of the three-center interactions at the expense of others, but the overall result is to maintain, to a considerable extent, the original LMO framework. Thus, the four resultant pairs of neighboring hydrogens around the square base in the C_{40}, structure have positive overlap populations of $0.075 \mathrm{e}^{-}$. There is a degree of arbitrariness in the molecular orbital localization, since only three MO's are shared around the square base, ${ }^{33}$ but this arbitrariness is just sufficient to ensure that any pair of adjacent (axial-equatorial) hydrogens can contribute to a three-center $\mathrm{H}-\mathrm{B}-\mathrm{H}$ bond orbital. We find that any such pair can spontaneously depart as H_{2}. In contrast, in the $C_{4 c}$ structure, interactions involving the formerly axial-axial or equa-torial-equatorial pairs $\mathrm{H} 1-\mathrm{H} 5$ and $\mathrm{H} 2-\mathrm{H} 4$ become even more antibonding (overlap population of $-0.092 \mathrm{e}^{-}$, cf. Table V). If one such pair, say $\mathrm{H} 1-\mathrm{H} 5$, is brought together to form the product hydrogen molecule, the pairwise interaction becomes even more repulsive (overlap population of $-0.313 \mathrm{e}^{-} ; C_{20}{ }^{*}$, Table V) before the requisite HOMO-LUMO inversion occurs on the way to products. In the LMO picture, a $\mathrm{H} 1-\mathrm{B}-\mathrm{H} 5$ three-center orbital is formed ($C_{2 v}{ }^{*}$, Table IV), but H 1 and H5 have opposite phases prior to the HOMO-LUMO inver-
sion, and a high activation barrier ${ }^{34}$ results. A pair which consists of one basal and one axial hydrogen has a slightly negative overlap population in the $C_{4 v}$ structure ($-0.026 \mathrm{e}^{-}$) and the elimination of such a pair as H_{2} has a PRDDO energy barrier of $\sim 11 \mathrm{kcal} / \mathrm{mol}$.

Similarly, both the LMO results and the overlap populations establish $\mathrm{H} 1-\mathrm{H} 4$ and $\mathrm{H} 4-\mathrm{H} 5$ as the favored pairs for elimination as hydrogen from the $C_{2 c}$ structure (Figure 5). Again, these pairs in the $C_{2 k}$ structure correspond in the $D_{3 h}$ structure to equatorial-axial interactions which have been enhanced as a result of the geometrical deformation. One of these threecenter bonds (e.g., H4-B-H5) is preserved in the subsequent deformation to C_{s} symmetry (cf. Figure 3d), making possible a smooth conversion to BH_{3} and H_{2}. Other pairs, such as H3-H5, represent concomitantly weakened axial-equatorial interactions; the modest negative overlap population of -0.014 e^{-}for H3-H5 produces a small PRDDO barrier of $\sim 9 \mathrm{kcal} /$ mol for evolution of hydrogen.

Finally, we note that the LMO's of the $C_{4 c}$ structure go smoothly over into those of the lower energy configuration of $C_{2 v}$ symmetry (Figure 5). Hence, this transformation (Figure 3c) can proceed spontaneously, as reported above. In each case, the LMO results and the overlap populations conveniently indicate those hydrogen motions which can result in a smooth conversion of the MO's of BH_{5} to those of BH_{3} and H_{2}, as well as those which must induce or enhance energetically unfavorable interactions.

Intramolecular Rearrangement in BH_{5}

As noted above, the fact that most of the hydrogen evolved from BH_{4}^{-}in $\mathrm{D}_{2} \mathrm{O}$ or BD_{4}^{-}in $\mathrm{H}_{2} \mathrm{O}$ is $\mathrm{HD}^{2-4,6}$ strongly implies that the incoming proton or deuteron largely adopts and maintains a position in the " H_{2} " subunit. If, instead, the entering proton (or deuteron) had occupied one of a set of three or more equivalent positions, a substantial fraction of D_{2} would have been evolved in the reaction of $\mathrm{BD}_{4}{ }^{-}$in $\mathrm{H}_{2} \mathrm{O}$. Thus, Mesmer and Jolly report a composition of $3.1 \% \mathrm{H}_{2}, 95.6 \% \mathrm{HD}$, and just $1.3 \% \mathrm{D}_{2}$ from complete hydrolysis of $\mathrm{BD}_{4}{ }^{-}$in $\mathrm{H}_{2} \mathrm{O}$ at room temperature; ${ }^{3}$ the $3 \% \mathrm{H}_{2}$ is principally a measure of the extent of exchange with solvent prior to hydrolysis. Similarly, the hydrolysis of $\mathrm{BH}_{4}{ }^{-}$in $\mathrm{D}_{2} \mathrm{O}$ yields $\sim 4 \% \mathrm{D}_{2}{ }^{3}$ While a secondary intermediate having three or more equivalent hydrogen-loss positions might play a minor role, we shall take
the above as evidence for a slow, but detectable, internal rearrangement (scrambling) in BH_{5}.

In order to examine the facility of internal rearrangement, we constructed optimized quadratic synchronous transit (QST) pathways ${ }^{32}$ [Figures $6 \mathrm{a}-\mathrm{c}$] for three prospective internal rearrangement processes of the $C_{s}(\mathrm{I})$ (upper curves) and C_{s} (III) structures for BH_{5}. In each case, two or more hydrogens are permuted among the unique C_{s} symmetry positions. QST's are three-point interpolation pathways ${ }^{32}$ which here are based on PRDDO optimized initial, intermediate, and final structures (solid symbols). The intermediate structures were first generated via linear synchronous transits ${ }^{31}$ and were then fully optimized energetically at constant path coordinate, p (orthogonal optimization). ${ }^{32}$

In Figure 6a we show the optimized QST's for the following double interchange:

For both the $C_{s}(\mathrm{I})$ and $C_{s}(\mathrm{III})$ processes, the optimal half-way point ($p=0.5$) was found to be just the $C_{4 i}$ structure previously characterized. For this process, the computed PRDDO barrier to rearrangement is $34 \mathrm{kcal} / \mathrm{mol}$ for the C_{s} (III) structure, but is just $5 \mathrm{kcal} / \mathrm{mol}$ for the higher energy $C_{s}(\mathrm{I})$. Using the PRDDO structures, we found the two barriers to be 32 and $15 \mathrm{kcal} / \mathrm{mol}$, respectively, when evaluated at the $4-31 \mathrm{G}$ level. The analogous exchange of $\mathrm{H} 4-\mathrm{H} 5$ with $\mathrm{H} 1-\mathrm{H} 3$ (or $\mathrm{H} 2-\mathrm{H} 3$) was not examined, but would be expected to yield an essentially identical barrier, because $\mathrm{H} 4-\mathrm{H} 5$ can rotate nearly freely above the BH_{3} subunit.

We next considered the process shown in equation 2. Here,

H 1 and H 4 interchange identities and become equivalent at the midpoint of the path. The midpoint structure displays C_{s} symmetry and has a mirror plane which passes through $\mathrm{B}, \mathrm{H} 2$, H 3 , and H5. The barrier to rearrangement of the C_{s} (III) structure is $24 \mathrm{kcal} / \mathrm{mol}$ when computed at the PRDDO level (Figure 6b) and $19 \mathrm{kcal} / \mathrm{mol}$ when evaluated via $4-31 \mathrm{G}$ calculations. The pair of $C_{s}(\mathrm{I})$ structures, however, can interconvert without activation at the PRDDO level, and encounter a barrier of only $4 \mathrm{kcal} / \mathrm{mol}$ at the $4-31 \mathrm{G}$ level.
Third, we examine in Figure 6c a process (eq 3) which interchanges H 1 with H 4 . Apart from the labeling of the atoms, the optimized midpoint structure in this case is in fact identical with that obtained for process 2 , and hence the respective PRDDO and 4-31G barriers are also the same. Equivalent barrier heights should have been expected because $\mathrm{H} 4-\mathrm{H} 5$ is

Figure 6. Optimized quadratic synchronous transit pathways for interconversions of C_{s} structures for BH_{5} [eq 1-3]. Solid symbols represent structures optimized at constant path coordinate.

essentially free to rotate above the BH_{3} subunit, as noted above.
Finally, we have considered a procesis which differs from (3) only in that H 4 passes across the face in such a way as to take up the right-most position in the H_{2} subunit. Here, B, H3, H4, and H 5 all lie in a common plane at the midpoint of the pathway, and the symmetry is C_{26}; this structure, which marks the top of the barrier, lies less than $0.3 \mathrm{kcal} / \mathrm{mol}$ above the C_{s} midpoint for (3) in the PRDDO calculations, but is about 0.6 $\mathrm{kcal} / \mathrm{mol}$ lower when evaluated at the $4-31 \mathrm{G}$ level.

For the most part, the symmetries reported above for the midpoint structures were not assumed in advance, but were derived from the calculations themselves. We note that the specific PRDDO and 4-31G barrier heights obtained here can serve as only qualitative guides, in view of the limits in the applicability of these methods to BH_{5} (see later). Even so, a useful result does emerge from these studies of pathways; the previously characterized $C_{2 v}$ and $C_{4 c}$ structures essentially represent optimal transition states for interconversions of the C_{s} structures. Other rearrangement processes are conceivable, but none of these seemed to us to be particularly attractive candidates. Qualitatively, these results show that internal re-

Table VI. Mulliken Atomic Populations, q

	$\mathrm{CH}_{5}{ }^{+}$	$\mathrm{CH}_{5}{ }^{+a}$	$\mathrm{CH}_{3}{ }^{+}$	$\mathrm{BH}_{5} C_{s}(11)$	$\mathrm{BH}_{5} C_{5}(111)$	BH_{3}	H_{2}
$q\left(\mathrm{H}_{1}\right)$	0.80	0.79	0.74	1.10	1.12	1.11	
$q\left(\mathrm{H}_{4,5}\right)$	0.73	0.75		0.88	0.91		
$q(\mathrm{~B}, \mathrm{C})$	6.14	6.13	5.77	4.96	4.86	4.68	1.0

${ }^{a} \mathrm{CH}_{5}{ }^{+}$for which distal hydrogens $\mathrm{H}_{4.5}$ have exponents of 1.20 .

Figure 7. Optimized structures for $\mathrm{CH}_{5}{ }^{+}\left(r_{1}=r_{2}=2.032 \mathrm{au}, r_{3}=2.535\right.$ au, $\left.\theta=113.4^{\circ}, \alpha=39.2^{\circ}, \beta=113.4^{\circ}\right)$ and $\mathrm{CH}_{3}{ }^{+}(r=2.045 \mathrm{au})$.
arrangement in BH_{5} is not inordinately difficult but should not occur extensively unless BH_{5} is formed from $\mathrm{BH}_{4}{ }^{-}+\mathrm{H}^{+}$with considerable excess internal energy.

Comparison of BH_{5} and $\mathrm{CH}_{5}{ }^{+}$. We now consider in detail possible reasons for the apparent difference in relative stability of BH_{5} and $\mathrm{CH}_{5}{ }^{+}$. Intuitively, one would expect $\mathrm{CH}_{3}{ }^{+}$to bond molecular hydrogen more tightly than does BH_{3}, simply because of the former's positive charge. In order to compare actual charge distributions and bonding descriptions, we optimized structures for $\mathrm{CH}_{5}{ }^{+}$and $\mathrm{CH}_{3}{ }^{+}$(Figure 7) with PRDDO, and localized the PRDDO wave functions for $\mathrm{CH}_{5}{ }^{+}$, $\mathrm{CH}_{3}{ }^{+}, \mathrm{BH}_{5}$, and $\mathrm{BH}_{3}{ }^{35}$ using the Boys criterion ${ }^{26.27}$ (Table IV). For comparison with $\mathrm{CH}_{5}{ }^{+}$we selected a structure along the computed C_{s} pathway for BH_{5} whose distal B-H and $\mathrm{H}-\mathrm{H}$ distances differed negligibly from those of $\mathrm{CH}_{5}{ }^{+} .{ }^{36}$ As shown in Table Ill, this structure $\left[C_{s}(\mathrm{II})\right]$ is lower in energy than the $D_{3 h}, C_{4 c}, C_{2 r}$, or initial $C_{s}(\mathrm{I})$ configurations. The results of localizing the MO's for $C_{s}(11)$ are presented in Table IV, and the overlap and atomic populations are given in Tables V and V1. For comparison, we have also included the results for the $C_{s}(111)$ structure in which the distal $\mathrm{C}-\mathrm{H}$ and $\mathrm{B}-\mathrm{H}$ distances are matched proportionately, rather than absolutely. For both comparable and proportional $\mathrm{H} 4-\mathrm{H} 5$ distances, we find that the PRDDO overlap population for the atom pair $\mathrm{H} 4-\mathrm{H} 5$ is significantly larger in BH_{5} [0.56 $\left.\mathrm{e}^{-}, C_{s}(\mathrm{II}) ; 0.68 \mathrm{e}^{-}, C_{s}(111)\right]$ than in $\mathrm{CH}_{5}{ }^{+}\left[0.41 \mathrm{e}^{-}\right]$, and that the $\mathrm{B}-\mathrm{H} 4$ and $\mathrm{B}-\mathrm{H} 5$ overlap populations $\left[0.20 \mathrm{e}^{-}, C_{s}(11) ; 0.11 \mathrm{e}^{-}, C_{s}(111)\right]$ are somewhat smaller than their $\mathrm{C}-\mathrm{H}$ counterparts [$0.27 \mathrm{e}^{-}$]. In the localized molecular orbital framework, most of the interactions involving H 4 and H 5 are partitioned into the three-center $\mathrm{H} 4-\mathrm{B}(\mathrm{C})-\mathrm{H} 5$ bond of the pentacoordinated species (Table IV). Here we also find greater electron populations on H 4 and H 5 in BH_{5} [0.86 $\left.\mathrm{e}^{-} . C_{s}(11) ; 0.91 \mathrm{e}^{-} . C_{s}(\mathrm{IlI})\right]$ than in $\mathrm{CH}_{5}{ }^{+}\left[0.72 \mathrm{e}^{-}\right]$, and a correspondingly smaller population on boron $\left[0.32 \mathrm{e}^{-}, C_{s}(\mathrm{II})\right.$; $\left.0.21 \mathrm{e}^{-}, C_{s}(\mathrm{III})\right]$ than on carbon [$0.58 \mathrm{e}^{-}$]. Indeed, the total Mulliken populations on H 4 and H 5 in $\mathrm{CH}_{5}{ }^{+}$show that ~ 0.5 electron is transferred from H_{2} to the $\mathrm{CH}_{3}{ }^{+}$subunit, as compared to a transfer of only about 0.2 electron in BH_{5} (Table $\mathrm{V} 1)$. These differences are strikingly evident in the electron density maps for the three-center LMO's (Figure 8) and fully confirm the intuitive expectation that the positively charged $\mathrm{CH}_{3}{ }^{+}$should more readily bond H_{2} than should BH_{3}.

Figure 8. Electron density (PRDDO) for the three-center $\mathrm{H}-\mathrm{B}(\mathrm{C})-\mathrm{H}^{+}$ localized orbitals in (a) the C_{s} (II) and (b) the C_{s} (III) structures for BH_{5}, and (c) $\mathrm{CH}_{5}^{+}\left(C_{s}\right)$ in the $\mathrm{H}-\mathrm{B}(\mathrm{C})-\mathrm{H}^{\prime}$ plane. Contour levels shown (e/au ${ }^{3}$) are $0.25,0.17,0.13,0.1,0.08,0.06,0.045,0.032,0.02$, and 0.01 in each case. Crosses mark the atomic positions

As a check on the sensitivity of these results to the choice of exponent, we substituted hydrogen-molecule exponents (1.20) for the ab initio optimized distal hydrogen exponents in CH_{5}^{+} (1.29). ${ }^{14}$ Although Mulliken charge distributions sometimes depend significantly on the choice of exponent, ${ }^{21}$ we found that here the choice of exponent was not a significant factor (Table V1). ${ }^{37}$

Dissociation of BH_{5} to BH_{3} and H_{2}

As noted above, the PRDDO method indicated that BH_{5} is less stable than BH_{3} and H_{2} by some 28 kcal for the C_{s} (III) structure, and 56 kcal for the C_{s} (I) structure (Table 11I). In this section we consider the effect of using STO-3G and 4-31G basis sets at the SCF level, estimate the effects of configuration interaction, investigate some solvation effects, and finally consider the relationship of these calculations to the experimental results of others as outlined in the introduction of this paper.

As shown in Figure 4, minimum basis set STO-3G and extended basis set $4-31 \mathrm{G}$ calculations ${ }^{29}$ on PRDDO optimized C_{s} structures for BH_{5} again yielded smooth, monotonic dissociation curves. The exothermicity for dissociation decreased somewhat as the sophistication of our computational methods increased, but even refinement at the 4-31G level of the angle α (cf . Figure 2d) left the C_{s} structures several $\mathrm{kcal} / \mathrm{mol}$ above separated $\mathrm{BH}_{3}+\mathrm{H}_{2}{ }^{38}$
The C_{s} (III) structure, which is rather like the optimized $\mathrm{CH}_{5}{ }^{+}$structure, ${ }^{15.16}$ contains distal B-H lengths of 2.8 au , which are larger than the distal $\mathrm{C}-\mathrm{H}$ lengths of $2.5 \mathrm{au}{ }^{15.16}$ by the ratio of usual $\mathrm{B}-\mathrm{H}(2.25 \mathrm{au})$ and $\mathrm{C}-\mathrm{H}(2.06 \mathrm{au})$ lengths for single bonds. Use of the extended basis set of Laws, Stevens, and Lipscomb ${ }^{21}$ (double zeta plus polarization) for BH_{3} and
the $C_{s}(\mathrm{III})$ structure for BH_{5}, and the optimal ($1 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{p}$) basis set for H_{2} of Fraga and Ransil, ${ }^{39}$ gave essentially the same result as the $4-31 \mathrm{G}$ calculation, i.e., a C_{s} (III) structure ~ 12 $\mathrm{kcal} / \mathrm{mol}$ above the separated $\mathrm{BH}_{3}+\mathrm{H}_{2} \cdot{ }^{38,40} \mathrm{~A}$ similar extension had previously stabilized $\mathrm{CH}_{5}{ }^{+}$relative to $\mathrm{CH}_{3}{ }^{+}$and $\mathrm{H}_{2}{ }^{18,19}$ by an additional $\sim 6-9 \mathrm{kcal} / \mathrm{mol}$. Complete optimization of parameters other than the distal $\mathrm{B}-\mathrm{H}$ length might further stabilize BH_{5}, but our conclusion is that BH_{5} is not predicted to be stable toward dissociation to BH_{3} and H_{2} at the Hartree-Fock limit.

An estimate of electron correlation suggests only marginal stability at best for $\mathrm{BH}_{5} . \mathrm{CH}_{5}{ }^{+}$was further stabilized with respect to $\mathrm{CH}_{3}{ }^{+}+\mathrm{H}_{2}$ by $\sim 21 \mathrm{kcal} / \mathrm{mol}$ by the inclusion of configuration interaction (CI) at the extended basis set level; ${ }^{18}$ however, BH_{5} is less compact than $\mathrm{CH}_{5}{ }^{+}$, and is therefore likely to show much less stabilization. In fact, the C_{s} (III) structure of BH_{5} is stabilized by only $\sim 2 \mathrm{kcal} / \mathrm{mol}$ relative to $\mathrm{BH}_{3}+\mathrm{H}_{2}$ (Figure 4) in a minimum basis ${ }^{4!}$ set PRDDO-CI calculation in which all single and double excitations were included; ${ }^{31}$ the same calculation gave $5-6 \mathrm{kcal}$ of stabilization for $\mathrm{CH}_{5}{ }^{+}$. Of course, no direct comparison can be made of CI stabilizations when different basis sets are used, but it appears likely that Cl would not stabilize the C_{s} (III) structure by more than $7-10 \mathrm{kcal}$ if an extended basis were used. An additional $1-2 \mathrm{kcal} / \mathrm{mol}$ stabilization for BH_{5} relative to $\mathrm{BH}_{3}+\mathrm{H}_{2}$ must be included for the quadruple excitations which correspond to simultaneous double excitations in BH_{3} and $\mathrm{H}_{2} .{ }^{42,43} \mathrm{~A}$ similar situation arises in the dissociation of $\mathrm{B}_{2} \mathrm{H}_{6}$, where single and double excitations stabilize $2 \mathrm{BH}_{3}$ at large separation by 2 kcal less than twice the CI stabilization of $\mathrm{BH}_{3} .{ }^{20} \mathrm{Our}$ conclusion here is that the probable Cl stabilization of $8-12 \mathrm{kcal} / \mathrm{mol}$ of $C_{s}(111) \mathrm{BH}_{5}$ would approximately balance the instability at the SCF level, and that this balance is not strongly dependent on the distal $\mathrm{B}-\mathrm{H}$ lengths. ${ }^{38}$ If we have underestimated either the CI stabilization, or if further optimization yields a slight additional stability for BH_{5}, then BH_{5} would be stable in the gas phase. ${ }^{44}$

Solvation effects were studied first in specific hydration models, and then in cavity or continuum models. The interaction ${ }^{45}$ of BH_{3} at an initial distance of 6 au from $\mathrm{H}_{2} \mathrm{O}$ (lone pair donor, Figure 9a) was completely optimized (Figure 9b) at the PRDDO level to an energy of $\sim 60 \mathrm{kcal} / \mathrm{mol}$ below that of separated BH_{3} and $\mathrm{H}_{2} \mathrm{O}$. Addition of a second $\mathrm{H}_{2} \mathrm{O}$ (Figure 9 c) did not significantly change the geometry or energy, and yielded the same result as an optimization starting from two $\mathrm{H}_{2} \mathrm{O}$'s equidistant from BH_{3} (Figure 9d). At the STO-3G and 4-3IG levels, partial reoptimizations placed the $\mathrm{BH}_{3}: \mathrm{H}_{2} \mathrm{O}$ stabilizations at 49 and $15 \mathrm{kcal} / \mathrm{mol}$, respectively. ${ }^{38}$ A value of $5.5 \mathrm{kcal} / \mathrm{mol}$ for stabilization of $\mathrm{BH}_{3}: \mathrm{H}_{2} \mathrm{O}$ (STO-3G coordinates) was found earlier ${ }^{46 a}$ at the $6-31 \mathrm{G}^{*}$ level. Thus we see here a trend toward decreasing stabilization as the basis set is improved. A similar sensitivity to the choice of basis set also has been reported for $\mathrm{BH}_{3}: \mathrm{NH}_{3} .{ }^{46}$ Now, we use a statistical method due to Birge et al. ${ }^{47}$ to examine the energy of solvation, $E_{\text {solv }}$, of the $\mathrm{BH}_{3}: \mathrm{H}_{2} \mathrm{O}$ complex, where $E_{\text {solv }}$ consists of E_{vdW} (the van der Waals interaction between the complex and nearest neighbor solvent molecules), $E_{\text {es }}$ (the static and induced solvent-solute dipole-dipole interactions), and $E_{\text {cav }}$ (the energy of creation of a cavity); this method neglects specific hydrogen bonding. We find that the $\mathrm{BH}_{3}: \mathrm{H}_{2} \mathrm{O}$ complex is destabilized by $\sim 0.5 \mathrm{kcal} / \mathrm{mol}$ (Table VII). Combining this information with earlier results, including an estimate for geometry optimization, we find the solvation energy of BH_{3} at the $6.31 \mathrm{G}^{*}$ level to be roughly $6-8 \mathrm{kcal} / \mathrm{mol}$.

Now, for BH_{5} we employ the statistical method directly. Using the $4-31 \mathrm{G}$ dipole moment of 1.92 D for the C_{s} (III) structure, we find a destabilizing solvation energy ${ }^{48}$ of about $+1 \mathrm{kcal} / \mathrm{mol}$. However, this result is proportional to the square of the dipole moment; a value of 2.5 D would give an electro-

Ecu

Figure 9. (a) Initial geometry for $\mathrm{BH}_{3}: \mathrm{H}_{2} \mathrm{O}$ complex: $r_{1}=2.211 \mathrm{au}, r_{2}=$ $1.886 \mathrm{au} ; \theta=120.00^{\circ} ; \alpha=98.98^{\circ}$. (b) PRDDO optimized $\mathrm{BH}_{3}: \mathrm{H}_{2} \mathrm{O}$ complex: $r_{1}=2.228 \mathrm{au} ; r_{2}=1.870 \mathrm{au} ; \theta=114.16^{\circ}, \alpha=110.47^{\circ}$. (c) and (d) Initial geometries for $\mathrm{BH}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ complexes based on (a) and (b). Structural parameters are as defined above.

Table V11. Solvation Energies from the Statistical Interaction Model ${ }^{a}$

$E_{\text {solvation }} b, c=E_{v \mathrm{dW}}+E_{\text {es }}+E_{\mathrm{cav}}+E_{\text {or }}{ }^{d}$			
	Energies e		
Parameter	$C_{s}(1)$	$C_{s}(111)$	$\mathrm{BH}_{3}: \mathrm{H}_{2} \mathrm{O}$
Van der Waals (dispersion)	-2.517	-2.737	-4.047
Cavity formation	11.923	12.768	19.160 g
Electrostatic interaction	-13.876	$-9.40 i$	-14.810
Solvation energy	-4.470	0.630	0.303

${ }^{a}$ Cf. ref 47 and $48 .^{b} \mathrm{Cf}$. text. ${ }^{c}$ The units are kcal/mol. ${ }^{d}$ This contribution of $E_{\text {or }}$ is negligible in this case, and is therefore omitted. "These values are calculated for $4-31 \mathrm{G}$ dipole moments. f These values are based on 15 nearest neighbors. g This calculation employed an elliptical cavity.
static energy of $-16.3 \mathrm{kcal} / \mathrm{mol}$, and hence a solvation energy of $-6.2 \mathrm{kcal} / \mathrm{mol}$. In view of these difficulties, we also examined a specific $\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{BH}_{3}{ }^{\delta-} \ldots \mathrm{H}_{2}{ }^{\delta+} \ldots \mathrm{OH}_{2}$ complex based on the C_{s} (11I) BH_{5} structure. Optimization at the PRDDO level for fixed distal $\mathrm{B}-\mathrm{H}$ lengths of 2.81 au gave an $\mathrm{O}-\mathrm{B}$ (left side) distance of 3.83 au and a $\mathrm{B}-\mathrm{O}$ (right side) distance of 5.15 au . This PRDDO complex is more stable than separated $C_{s}(1 \mathrm{II}) \mathrm{BH}_{5}+2 \mathrm{H}_{2} \mathrm{O}$ by 7 kcal . In a $4-31 \mathrm{G}$ calculation, the $\mathrm{B}-\mathrm{O}$ interaction is stabilizing by $2 \mathrm{kcal} / \mathrm{mol}$; however, the $\mathrm{O}-\mathrm{B}$ interaction is very weakly repulsive. Unless electron correlation enhances these interactions, particularly the latter, we conclude that hydration alters the energy curve very little over the range of distal $\mathrm{B}-\mathrm{H}$ distances for which a stable BH_{5} might reasonably be found. Hence, solvation effects do not appear to aid in stabilizing BH_{5} relative to BH_{3} and H_{2}.

Figure 10. Bonding in BH_{5}.

We have considered other effects that might stabilize BH_{5} and therefore account for its estimated lifetime (see later) of $\sim 10^{-10} \mathrm{~s}$ in solution. The entrance of H^{+}to $\mathrm{BH}_{4}{ }^{-}$could produce a force on one of the resident hydrogens away from boron, and thus could generate an asymmetric vibration mode for the relative motion of the new $\mathrm{B}-\mathrm{H}$ and previously existing, but elongated, $\mathrm{B}-\mathrm{H}$ bond; conversion to a symmetric mode would then result in loss of H_{2}. Unfortunately, the time scale for this change of mode is usually $\leq 10^{-12} \mathrm{~s} .{ }^{49}$ Probably, a similar comment applies to the trapping of an excited rotational mode of the BH_{5} complex. Hence, a dynamical explanation sems untenable. ${ }^{50}$ Next, we considered the possibility that the intrinsic pressure of water ($10^{+3} \mathrm{~atm}$) might confine the complex, but the forces seem too small by about two orders of magnitude. ${ }^{51}$ Finally, a specific structure effect of water could conceivably confine BH_{5}; however, both exchange and hydrogen loss are found for hydrolysis of $\mathrm{BD}_{4}{ }^{-}$in moist tetrahydrofuran, ${ }^{52}$ which is likely to have a different solvent structure effect.

Comments on Experimental Results. In the mechanism (Figure 1) due principally to Kreevoy and Hutchins, ${ }^{4}$ protonation of BH_{4}^{-}by $\mathrm{D}_{3} \mathrm{O}^{+}$dominates up to $\mathrm{pH} \simeq 12$; deprotonation by OD^{-}becomes competitive, and ultimately suppresses hydrolysis, only above pH 13 . At pH 10 exchange (via deprotonation by $\mathrm{D}_{2} \mathrm{O}$) and hydrogen loss occur with relative rates of $1: 10 .^{22,52}$ The fact that hydrogen is lost as HD implies either that the D^{+}added to BH_{4}^{-}(a) becomes functionally equivalent to only one resident hydride (e.g., $\mathrm{BH}_{3}: \mathrm{HD}$, in C_{5} symmetry), or (b) is unique and is lost when "hydrogen" is expelled. A candidate for (b) is the $C_{4 c}$, structure where D is on the four-fold axis, as suggested by Kreevoy and Hutchins. ${ }^{4}$ However, process (b) is incompatible with our molecular orbital studies. Hence, we consider, as did Kreevoy and Hutchins, only C_{s} symmetry, in particular, the C_{s} (III) BH_{5} structure, within possibility (a).

Kreevoy and Hutchins ${ }^{4}$ find that the rate of hydrolysis (hydrogen evolution) is given by $k_{1}{ }^{\mathrm{Hyd}}\left[\mathrm{BH}_{4}{ }^{-}\right]$, where

$$
\begin{equation*}
k_{1}^{\mathrm{Hyd}}=\left[k_{\mathrm{H}^{+}}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+k_{\mathrm{H}_{2} \mathrm{O}}\right]\left\{\frac{k_{\mathrm{H}_{2} \text { loss }}}{k_{\mathrm{H}_{2} \text { loss }}+k_{\text {depr }}\left[\mathrm{OH}^{-}\right]}\right\} \tag{4}
\end{equation*}
$$

The term in the square brackets represents the total rate of protonation of $\mathrm{BH}_{4}{ }^{-}$, and the term in curly brackets (the fractionation term) expresses the probability that BH_{5} will lose molecular hydrogen rather than be deprotonated by OH^{-}. Deprotonation by $\mathrm{H}_{2} \mathrm{O}$ also occurs, ${ }^{53}$ as noted above, but this is a minor perturbation which need not concern us here. At very high pH , the experimental rate of hydrolysis falls rapidly to zero in a way which is consistent with the dependence of the fractionation term on $\left[\mathrm{OH}^{-}\right]$. This $\left[\mathrm{OH}^{-}\right]$dependence strongly indicates that exchange with solvent (via deprotonation) and hydrogen loss in fact proceed through a common intermediate, for otherwise the rate of hydrolysis ought to be unaffected, apart from a possible medium effect, by a change in $\left[\mathrm{OH}^{-}\right]$or $\left[\mathrm{OD}^{-}\right]$. We accept this as evidence for a common intermediate, which we shall take to be BH_{5}.

The kinetic analysis ${ }^{4}$ further indicates that the fractionation term falls to ~ 0.5 when $\left[\mathrm{OH}^{-}\right]$reaches $\sim 1 \mathrm{M}$; then, $k_{\mathrm{H}_{2} \text { loss }}$ and $k_{\text {depr }}\left[\mathrm{OH}^{-}\right]$are approximately equal. We can therefore infer the intrinic lifetime for BH_{5} determined by its rate of hydrogen loss provided that we can reliably estimate the rate for its deprotonation in $1 \mathrm{M} \mathrm{OH}^{-}$. Since OH^{-}is a much stronger base than is BH_{4}^{-}, the deprotonation of BH_{5} by OH^{-} is expected to be strongly exothermic. Indeed, there is an appreciable activation energy for hydrolysis of $\sim 23 \mathrm{kcal} / \mathrm{mol}$ when BH_{4}^{-}is protonated by $\mathrm{H}_{2} \mathrm{O}$ in the reverse of the process under consideration. ${ }^{3}$ The choice of a diffusion controlled value ${ }^{54}$ for $k_{\text {depr }}$ of $\approx 10^{10} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ then yields $\sim 10^{10} \mathrm{~s}^{-1}$ for $k_{\mathrm{H}_{2} \text { loss. }}$. We therefore take $10^{-10} \mathrm{~s}$ as a "lifetime" for BH_{5}. We suggest that the 10^{3} factor over $10^{-13} \mathrm{~s}(\mathrm{kT} / \mathrm{h})$ indicates some kind of barrier in solution of about $5 \mathrm{kcal} / \mathrm{mol}$; such a treatment would neglect the entropy effects in the transformation of a possibly solvent-stabilized BH_{5} to its dissociable transition state. ${ }^{38}$ If the deprotonation step has a barrier, i.e., is not diffusion controlled, the lifetime could be longer. Also, if the preexponential factor is like that of $10^{16} \mathrm{~s}^{-1}$ for ethane decomposition to methyl radicals, the activation barrier is 8.4 kcal for the rate constant of $10^{10} \mathrm{~s}^{-1}$ for BH_{5} at $25^{\circ} \mathrm{C}$. Thus, our computational results differ from experiment by some 5-10 $\mathrm{kcal} / \mathrm{mol}$, and we suspect that our theoretical models are inadequate to this extent.

Last, we comment on the results obtained by Olah and coworkers ${ }^{5}$ upon treatment of excess solid NaBH_{4} or LiAlH_{4} with anhydrous $\mathrm{D}_{2} \mathrm{SO}_{4}$ or DF (or isotopic inverses) in a bomb at $-78^{\circ} \mathrm{C}$. Typically $\sim 60 \% \mathrm{H}_{2}$ and $40 \% \mathrm{HD}$ (plus $2 \% \mathrm{D}_{2}$) is found. These values are essentially statistical if we assume that the gaseous BH_{3} or $\mathrm{BH}_{2} \mathrm{D}$ evolved escape further reaction with acid. Here, the reaction may possibly occur on the crystal surface in such a way as to physically confine the $\mathrm{BH}_{4} \mathrm{D}$ sufficiently to promote internal rearrangement. More likely, these results may simply be due to the different solvent system. That is, the $\mathrm{BH}_{4} \mathrm{D}$ system may be formed at an internal energy higher than possible in an aqueous system, owing to the strongly acid nature of anhydrous $\mathrm{D}_{2} \mathrm{SO}_{4}$ and DF , and this excess internal energy may allow $\mathrm{BH}_{4} \mathrm{D}$ to rearrange readily. Further study of this heterogeneous system is needed in order to clarify the possible reasons for these different results.

Added Comments. New results on $\mathrm{BH}_{5}, \mathrm{BH}_{3}$, and H_{2} allow us to assess the contributions of polarization functions to the stabilization of BH_{5}. Our SCF and SCF-CI calculations with double ζ basis sets utilized optimized exponents of Roetti and Clementi ${ }^{55}$ for boron ($1 \mathrm{~s}=6.5666,1 \mathrm{~s}^{\prime}=4.2493,2 \mathrm{~s}=1.4131$, $2 s^{\prime}=0.8756,2 p=2.2173,2 p^{\prime}=1.0055$), optimized exponents of Shavitt et al. ${ }^{56}$ for $\mathrm{H}_{2}\left(1 \mathrm{~s}=1.1220,1 \mathrm{~s}^{\prime}=1.3860\right)$, and exponents for H taken from an optimization of a BH fragment ($1 \mathrm{~s}=1.0197,2 \mathrm{~s}=0.9852$). The CI calculations included all single and double excitations from valence orbitals to which were added an estimate for the effect of quadruple excitations. Our calculations, when compared with those of Hoheisel and Kutzelnigg ${ }^{57}$ and Collins et al. ${ }^{58}$ indicate that the bonding between the BH_{3} and H_{2} subunits is primarily due to the inclusion of polarization functions in the CI calculations. That is, without polarization functions. BH_{5} is still some $7 \mathrm{kcal} / \mathrm{mol}$ unstable with respect to BH_{3} and H_{2}. Inclusion of polarization functions in the CI may be necessary to describe a stabilizing donor-acceptor behavior in the BH_{3} and H_{2} subunits.

Finally we add in Figure 10 a simplified description of the bonding in the BH_{5} molecule.

Acknowledgment. We wish to thank Professors M. M. Kreevoy and D. R. Herschbach and Dr. R. M. Stevens for helpful discussions and comments, and particularly Dr. R. B. Birge for carrying out the statistical solvation calculations. We wish to thank the Office of Naval Research and the National Institutes of Health Grant GM06920 for support.

References and Notes

(1) Address correspondence to this author.
(2) W. L. Jolly and R. E. Mesmer, Abstracts, 141 st National Meeting of the American Chemical Society, Washington, D.C., March 1962, p 4M; W. L. Jolly and R. E. Mesmer, J. Am. Chem. Soc., 83, 4470 (1961).
(3) R. E. Mesmer and W. L. Jolly, Inorg. Chem., 1, 608 (1962).
(4) M. M. Kreevoy and J. E. C. Hutchins, J. Am. Chem. Soc., 94, 6371 (1972).
(5) G. A. Olah, P. W. Westerman, Y. K. Mo, and G. Klopman, J. Am. Chem. Soc., 94, 7859)1972), and references therein.
(6) R. E. Davis, E. B. Bromels, and C. L. Kibby, J. Am. Chem. Soc., 84, 885 (1962), and references therein.
(7) G. A. Olah, J. R. De Member, A. Commeyras, and J. L. Bribes, J. Am. Chem. Soc., 93, 459 (1971), and references therein.
(8) G. A. Olah, J. Am. Chem. Soc., 94, 808 (1972).
(9) M. D. Sefcik, J. M. S. Henis, and P. P. Gaspar, J. Chem. Phys., 61, 4321 (1974).
(10) G. A. Olah and R. H. Schlosberg, J. Am. Chem. Soc., 90, 2726 (1968).
(11) G. A. Olah, G. Klopman, and R. H. Schlosberg. J. Am. Chem. Soc., 91, 3261 (1969).
(12) W. Th. A. M. Van der Lugt and P. Ros, Chem. Phys. Lett., 4, 389 (1969).
(13) H. Kollmar and H. O. Smith, Chem. Phys. Lett., 5, 7 (1970).
(14) J. J. C. Mulder and J. S. Wright, Chem. Phys. Lett., 5, 445 (1970).
(15) V. Dyczmons, V. Staemmler, and W. Kutzelnigg, Chem. Phys. Lett., 5, 361 (1970).
(16) W. A. Lathan, W. J. Hehre, and J. A. Pople, J. Am. Chem. Soc., 93, 808 (1971).
(17) W. A. Lathan, W. J. Hehre, L. A. Curtiss, and J. A. Pople, J. Am. Chem. Soc., 93, 6377 (1971).
(18) V. Dyczmons and W. Kutzelnigg, Theor. Chim. Acta, 33, 239 (1974).
(19) P. C. Hariharhan, W. A. Lathan, and J. A. Pople, Chem. Phys. Lett., 14, 385 (1972).
(20) D. A. Dixon, I. M. Pepperberg, and W. N. Lipscomb, J. Am. Chem. Soc., 96, 1325 (1974), and ref 21.
(21) E. A. Laws, R. M. Stevens, and W. N. Lipscomb, J. Am. Chem. Soc., 94, 4461 (1972).
(22) M. M. Kreevoy, private communication.
(23) Hydrolysis is so slow that BH_{4}^{-}has been recrystallized from extremely basic solutions; cf. V. I. Mikheeva and V. B. Breetis, Dokl. Akad. Nauk SSSR, 131, 1349 (1960).
(24) T. A. Halgren and W. N. Lipscomb, Proc. Natl. Acad. Sci. U.S.A., 69, 652 (1972): T. A. Halgren and W. N. Lipscomb, J. Chem. Phys., 58, 1569 (1973).
(25) T. A. Halgren, D. A. Kleier, J. H. Hall, Jr., L. D. Brown, and W. N. Lipscomb, manuscript in preparation
(26) D. A. Kleier, T. A. Halgren, J. H. Hall, Jr., and W. N. Lipscomb, J. Chem. Phys., 61, 3905 (1974).
(27) S. F. Boys, Rev. Mod. Phys., 32, 306 (1960); J. M. Foster and S. F. Boys, ibid., 32, 300 (1960); S. F. Boys, "Quantum Theory of Atoms, Molecules, and the Solid State", P. O. Lowdin, Ed., Academic Press, New York, N. Y., 1966, p 253.
(28) The density map program was writteri in this laboratory.
(29) W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys., 51, 2657 (1969); W. J. Hehre, R. Ditchfield, R. F. Stewart, and J. A. Pople, ibid., 52, 2769 (1970); R. Ditchfield, W. J. Hehre, and J. A. Pople, ibid., 54, 724 (1971): W. J. Hehre and W. A. Lathan, ibid., 56, 5255 (1972).
(30) R. M. Stevens, J. Chem. Phys., 52, 1397 (1970).
(31) We used programs developed by D. A. Kleier and T. A. Halgren.
(32) T. A. Halgren, I. M. Pepperberg, and W. N. Lipscomb, J. Am. Chem. Soc., 97, 1248 (1975): T. A. Halgren and W. N. Lipscomb, to be published.
(33) The two three-center bonds can be between any two adjacent hydrogens and the boron; i.e., we actually have a set of symmetry equivalent threecenter bonds (appearing as $C_{2 v}$ structures in a valence bond picture), because there are not enough localized orbitals to reflect the full $C_{4 v}$ symmetry of the wave function.
(34) The initial linear synchronous transit (ref 32) resulted in a barrier of 173
$\mathrm{kcal} / \mathrm{mol}$; no optimization was attempted.
(35) For a meaningful comparison, we needed to localize the wave functions of optimized PRDDO structures for $\mathrm{CH}_{3}{ }^{+}$and $\mathrm{CH}_{5}{ }^{+}$. Beginning with the minimum basis set coordinates of Mulder and Wright (ref 14), we obtained the stable PRDDO structures reported in Table II and Figure 6 for $\mathrm{CH}_{3}{ }^{+}$and $\mathrm{CH}_{5}{ }^{+}$. We believe that Mulder and Wright did not completely optimize their CH_{5}^{+}structure; using the same program (i.e., Stevens, ref 30) as they did, we calculated a $\mathrm{CH}_{5}{ }^{+}$energy using our PRDDO optimized coordinates (adjusted for $\mathrm{C}-\mathrm{H}$ length shortening, cf. ref 20) and found an energy ~ 5 kcal lower than theirs (-40.318 au). Our structure was comparable to that of Lathan et al. (ref 16 and 17).
(36) The effect of exactly matching H_{1} and $\mathrm{H}-\mathrm{H}$ distances (by a configuration not on our pathway) was to change the BH_{5} overlap populations, localized orbital populations, and atomic charges on the order of $0.01 \mathrm{e}^{-}$.
(37) The effect of substituting the 1.20 exponents was also to change the overlap populations by $<0.01 e^{-}$.
(38) Cf. thesis, I. M. Pepperberg, for a more detailed account.
(39) S. Fraga and B. J. Ransil, J. Chem. Phys., 35, 1967 (1961).
(40) We saw a $2 \mathrm{kcal} / \mathrm{mol}$ drop in relative energy when the LSL basis ${ }^{21}$ was employed for the H_{2} molecule. It therefore appears that the H_{2} subunit requires exponents which match that of the H_{2} molecule.
(41) Some question has recently arisen as to the use of minimum basis set Cl as a means of theoretical analysis. Stevens has found that such a calculation may fail to describe properly the potential curve for a motion which passes through a conformation possessing higher symmetry than that of the initial structure, or one in which there is no 1:1 correspondence between valence and excited state orbital [cf. R. M. Stevens. J. Chem. Phys., 61, 2086 (1974)]. However, we retain C_{s} symmetry throughout the Cl calculation of BH_{5} dissociation, and consequently do not feel that the results of Stevens affect the validity of our conclusions.
(42) R. Ahlrichs, Theor. Chim, Acta, 35, 59 (1974).
(43) E. R. Davidson, "The World of Quantum Chemistry", R. Daudel and B Pullman, Ed., Rudel Publishing Co., Dordricht, Holland, 1974, p 17; S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem., 8, 61 (1974).
(44) We note that Olah and co-workers (cf. ref 5) have proposed the existence of BH_{5} as a gas phase intermediate in the reaction of $\mathrm{B}_{2} \mathrm{H}_{6}$ and D_{2}.
(45) This intermediate has been observed in methanol-water mixtures; cf. F T. Wang and W. L. Jolly, Inorg. Chem., 11, 1933 (1972).
(46) (a) J. D. Dill, P. v. R. Schleyer, and J. A. Pople, J. Am. Chem. Soc., 97, 3402 (1975); (b) $\mathrm{H}_{3} B: \mathrm{NH}_{3}$ only: A. Veillard, B. Levy, R. Daudel, and F. Gallais, Theor. Chim. Acta, B, 312 (1967), and references therein.
(47) R. B. Birge, M. J. Sullivan, and B. E. Kohler, in press.
(48) R. B. Birge, private communication.
(49) D. R. Herschbach, private communication.
(50) The 4-3 1G slope of $-8 \mathrm{kcal} / \mathrm{mol} / \mathrm{au}$ at a B-H distal length of 3 au (cf. Figure 4) translates into an outwardly directed force on the H_{2} subunits of 6×10^{27} g $\AA_{s^{-2}} / N_{0}$, where N_{0} is Avogadro's number. Assuming an effective mass of $2 \mathrm{~g} / \mathrm{N}_{0}$, the acceleration of $3 \times 10^{27} \AA \mathrm{~s}^{-2}$ on the H_{2} subunit is found to increase the distal $\mathrm{B}-\mathrm{H}$ distance by $1 \AA$ in $t=3 \times 10^{-14} \mathrm{~s}$. If the slope is 100 times smaller, e.g., $-0.08 \mathrm{kcal} / \mathrm{mol} / \mathrm{au}$, the time needed becomes $t=3 \times 10^{-13} \mathrm{~s}$.
(51) A pressure of 10^{3} atm $\approx 10^{8} \mathrm{~N} / \mathrm{m}^{2}$ distributed over a surface area for BH_{5} of $20 \AA^{2} /$ molecule corresponds to a total force of $\sim 1.2 \times 10^{26} \mathrm{~g} \AA \mathrm{~s}^{-2 / N_{0}}$ per molecule of BH_{5}, where N_{0} is Avogadro's number. From ref 50 , the outwardly directed $4-31 \mathrm{G}$ force on the H_{2} subunit per mole of BH_{5} is ~ 50 times greater.
(52) R. H. Cornforth, Tetrahedron, 26, 4635 (1970).
(53) W. J. Jolly, private communication.
(54) M. Eigen, Angew. Chem., Int. Ed. Engl., 3, 1 (1964).
(55) C. Roetti and E. Clementi, J. Chem. Phys., 60, 4725 (1974).
(56) I. Shavitt, R. M. Stevens, F. L. Minn, and M Karplus, J. Chem. Phys., 48, 2700 (1968).
(57) C. Hoheisel and W. Kutzelnigg. J. Am. Chem. Soc., 97, 6970 (1975).
(58) J. B. Collins, P. v. R. Schleyer, J. S. Binkley, J. A. Pople, and L. Radom, J. Am. Chem. Soc., preceding paper in this issue.

[^0]: ${ }^{a}$ Exponents are for all normal and distal hydrogens for all structures, including BH_{3}, but excluding the distal hydrogens in the $C_{s}(\mathrm{~V})$ structure (distal $\mathrm{B}-\mathrm{H}$ distance of 6.2 au). ${ }^{b}$ This is the exponent for the distal hydrogens which form the H_{2} subunit in the $C_{s}(\mathrm{~V})$ structure. ${ }^{\text {c }}$ Reference 14 .

[^1]: ${ }^{a}$ These values are reported in order of atoms listed under LMO. ${ }^{b}$ The delocalization is $\left[1 / 2 \int\left(\phi-\phi^{\mathrm{T}}\right)^{2} \mathrm{~d} \tau\right]^{1 / 2}$ where ϕ is an LMO and ϕ^{T} is obtained from ϕ by truncating nonlocal contributions and renormalizing, cf. ref 26 . ${ }^{c}$ The number in parentheses is the number of bonds of this type or the number of inner shells. ${ }^{d}$ This original optimized structure of $C_{2 v}$ symmetry is also obtained by concerted swing of $\mathrm{H} 2-\mathrm{H} 4$ (or $\mathrm{H} 1-\mathrm{H} 5$) starting from the C_{40} configuration. ${ }^{e}$ This structure is obtained from the motion needed to expel H 1 and H 5 directly from the $C_{4 c}$ configuration. f This structure is along the BH_{5} dissociation pathway of C_{s} symmetry; it has B-H distal lengths of 2.55 au . ${ }^{g}$ This structure, also along the dissociation pathway of C_{s} symmetry, has B-H distal lengths of 2.81 au .

